identification topology - significado y definición. Qué es identification topology
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es identification topology - definición

TOPOLOGICAL SPACE CONSISTING OF EQUIVALENCE CLASSES OF POINTS IN ANOTHER TOPOLOGICAL SPACE
Quotient topology; Quotient (topology); Quotient map; Identification space; Identification map; Quotient topological space; Gluing (topology); Identifiation map; Hereditarily quotient map
  • For example, <math>[0,1]/\{0,1\}</math> is homeomorphic to the circle <math>S^1.</math>
  • frameless

Trivial topology         
TOPOLOGY WHERE THE ONLY OPEN SETS ARE THE EMPTY SET AND THE ENTIRE SPACE
Indiscrete topology; Indiscrete space; Codiscrete topology
In topology, a topological space with the trivial topology is one where the only open sets are the empty set and the entire space. Such spaces are commonly called indiscrete, anti-discrete, concrete or codiscrete.
Computational topology         
SUBFIELD OF TOPOLOGY WITH AN OVERLAP WITH AREAS OF COMPUTER SCIENCE
Algorithmic topology
Algorithmic topology, or computational topology, is a subfield of topology with an overlap with areas of computer science, in particular, computational geometry and computational complexity theory.
Étale topology         
GROTHENDIECK TOPOLOGY ON THE CATEGORY OF SCHEMES, WHOSE COVERING FAMILIES ARE JOINTLY SURJECTIVE FAMILIES OF ÉTALE MORPHISMS
Etale topology; Étale sheaf
In algebraic geometry, the étale topology is a Grothendieck topology on the category of schemes which has properties similar to the Euclidean topology, but unlike the Euclidean topology, it is also defined in positive characteristic. The étale topology was originally introduced by Grothendieck to define étale cohomology, and this is still the étale topology's most well-known use.

Wikipedia

Quotient space (topology)

In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient topology, that is, with the finest topology that makes continuous the canonical projection map (the function that maps points to their equivalence classes). In other words, a subset of a quotient space is open if and only if its preimage under the canonical projection map is open in the original topological space.

Intuitively speaking, the points of each equivalence class are identified or "glued together" for forming a new topological space. For example, identifying the points of a sphere that belong to the same diameter produces the projective plane as a quotient space.